Physical, Safety, and Environmental Data FOR REFRIGERANTS

By JAMES M. CALM, PE,* Engineering Consultant, Great Falls, Va., and GLENN C. HOURAHAN, PE,** Air-Conditioning and Refrigeration Technology Institute (ARTI), Arlington, Va.

anufacturers have commercialized more than 50 new refrigerants (including blends) in the last decade, and they are examining additional candidates. Users should expect a number of new introductions as the phaseout of R-22, now the most widely used refrigerant, approaches. A similar flurry of service fluids occurred with the phaseouts of R-12 and R-502; R-12 was the most widely used refrigerant until a few years ago.

This article provides two tables that summarize selected physical, safety, and environmental data for old and current refrigerants as well as leading candidates. The data in the two tables are the same, but they are presented in a different order.

Table 1 is sorted by refrigerant num-

*James M. Calm is an internationally recognized engineering consultant in heating, air conditioning, and refrigerating systems and an ASHRAE Fellow. He has served as the developer and administrator of the Refrigerant Database, used to prepare the reference tables for the article, since its inception.

**Glenn C. Hourahan is Director of Technology of Air-Conditioning and Refrigeration Institute (ARI) and Vice President of the Air-Conditioning and Refrigeration Technology Institute (ARTI). He also heads the 21-CR research initiative, which sponsors the database effort. This article was prepared for HPAC Engineering as a convenient reference on common and selected candidate refrigerants

bers. Table 2 contains the same information sorted by the normal boiling points (at atmospheric pressure) of the refrigerants. Table 1 lends itself to finding information on a specific refrigerant. Table 2 rearranges the refrigerants in coarse proximity for similar applications to facilitate comparisons.

The data in these tables are taken from the ARTI Refrigerant Database,¹ which is an information system on alternative refrigerants, associated lubricants, and their uses in air conditioning and refrigeration. The database consolidates and facilitates access to property, compatibility, safety, environmental, application, and other data.² It also provides an extensive bibliographic reference system.

REFRIGERANT DATA TABLES

The parameter descriptions that follow are in the same sequence as presented in Tables 1 and 2—reading from the left to the right columns.

Identifiers

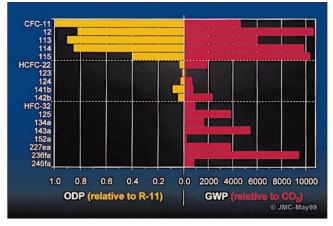
▶ Number shown is the standard designation based on those assigned by or recommended for addition to ANSI/ASHRAE Standard 34-1997, *Designation and Safety Classification of Refrigerants*, and pending addenda thereto.³ These familiar designations are used almost universally—usually preceded by "R-", "R", the word "refrigerant", composition-designating prefixes (for example CFC-, HCFC-, HFC-, or HC-), or manufacturer trade names.

• Chemical formula indicates the molecular makeup of single-compound refrigerants, namely those consisting of a single chemical substance.

▶ Blend composition is shown for refrigerant blends, namely those consisting of two or more chemicals that are mixed to obtain desired characteristics. The composition consists of two parts. The first identifies the components in order of increasing normal boiling points and are separated by slashes. The second part, which is enclosed in parentheses, indicates the mass fractions (as percentages) of those components in the same order.

The tables also indicate the **common names** by which some refrigerants are frequently identified.

Physical properties


▶ Molecular mass is a calculated value based on the atomic weights recognized by the International Union of Pure and Applied Chemists (IUPAC).⁴ It indicates the mass in grams of a mole of the refrigerant or, for blends, the mass-weighted average of a mole of the mixture.

• Normal boiling point (NBP) is the temperature at which liquid refrigerant will boil at standard atmospheric pres-

sure, namely 101.325 kPa (14.6959 psia). The NBP and most dimensional units in the tables are shown in both metric (SI) and in-lb units of measure. The bubble point (temperature at which a bubble first appears, hence the temperature at which boiling begins for a blend) is shown as the NBP for blends.

• Critical temperature (T_c) is the temperature at the critical point of the refrigerant. The T_c values shown for blends are the mass-weighted averages of the component T_{cs} , unless actual values have been determined.

Ozone depletion potential (ODP) contrasted to global warming (GWP) for key single-compound refrigerants, based on data from reference 6. CFCs generally have high ODP and GWP. HCFCs generally have much lower ODP and GWP. HFCs offer near-zero ODP, but some have comparatively high GWPs.

• Critical pressure (P_c) is the pressure at the critical point.

The NBP and critical properties suggest the application range for which an individual refrigerant might be suitable. Those with extremely low NBP lend themselves to ultra-low temperature refrigeration, for example, in cryogenic applications. Those with high NBPs are generally limited to high-temperature applications such as chillers. Both capacity and efficiency decline in a typical vapor-compression (reverse-Rankine) cycle-the one most commonly used—when condensing temperatures approach the T_c . The P_c will exceed the operating pressure except in transcritical cycles, which are uncommon except for R-744 (carbon dioxide). It is useful to compare relative operating pressures because practical cycles usually are designed to condense at 70 to 90 percent of

28

the $T_{\rm c}$ (on an absolute basis) and, therefore, of the $P_{\rm c}{}^{.5}$

Safety data

▶ The first value is the occupational exposure limit, namely the **Threshold Limit Value-Time Weighted Average** (**TLV-TWA**) or a consistent measure. It is an indication of chronic (longterm, repeat exposure) toxicity of the refrigerant. Some of the consistent toxicity indices are the Workplace Environmental Exposure Level (WEEL) guides or the Permissible Exposure Limits (PEL). These measures indicate

> adopted limits for workplace exposures for trained personnel during typical workdays and work weeks.

• Lower flammability limit (LFL) is the lowest concentration at which the refrigerant will burn in air under prescribed test conditions. It is an indication of flammability.

• Heat of combustion (HOC) is an indicator of how much energy the refrigerant will release when it burns in air—assuming complete reaction to the most sta-

ble products in their vapor states. Negative values indicate endothermic reactions (those that require heat to proceed), while positive values indicate exothermic reactions (those that liberate heat).

▶ ASHRAE Standard 34 safety group is an assigned classification that is based on the TLV-TWA (or consistent measure), LFL, and HOC. It comprises a letter (A or B) that indicates relative toxicity followed by a number (1, 2, or 3) that indicates relative flammability. These classifications are widely used in mechanical and fire construction codes to determine requirements to promote safe use. Most of these code provisions are based on ASHRAE Standard 15, *Safety Code for Mechanical Refrigeration*. Some of the classifications are followed by lower-case letters:

"d"—signifies that the project com-

mittee responsible for ASHRAE Standard 34, SSPC 34, has recommended *deletion* of the classification, but final approval and/or publication is still pending

"p"—indicates that the classification was assigned on a *provisional* basis

"r"—signifies that SSPC 34 has recommended *revision or addition* of the classification as shown, but final approval and/or publication is still pending

Environmental data

• Atmospheric lifetime (τ_{atm}) is an indication of the average persistence of the refrigerant—if it is released into the atmosphere or until it decomposes or reacts with other chemicals.

▶ Ozone depletion potential (ODP) is a normalized indicator, based on a value of 1.000 for CFC-11, of the ability of refrigerants (and other chemicals) to destroy stratospheric ozone molecules. The data shown are the modeled values adopted by the international scientific assessment.⁶ The ODPs shown for blends are mass-weighted averages.

▶ Global warming potential (GWP) is a similar indicator of the potency to warm the planet by action as a greenhouse gas. The values shown are relative to carbon dioxide (CO₂) for an integration period of 100 years. Both the ODP and GWP are calculated from τ_{atm} , measured chemical properties, and other atmospheric data. The GWPs shown for blends are mass-weighted averages.

NEW DATA

The τ_{atm} , ODP, and GWP values in the tables are new data based on the latest editions of international scientific assessments.^{6,7} The values indicated for blends were calculated for the nominal blend compositions.

Data definitions

The values shown for the refrigerant lives are composite, atmospheric lifetimes. The lifetimes can also be shown separately for the tropospheric (lower atmosphere where we live), stratospheric (next layer where global depletion of ozone is a concern), and higher layers because the atmospheric chemistry changes between layers.

The ODP values in the tables are *modeled* ODP values—the most indicative of environmental impacts. There are several other ways to express ODPs, including the *semi-empirical* ODP, *time-dependent* ODPs, and *regulatory* values such as those adopted in laws or in the Montreal Protocol.

The semi-empirical ODPs are calculated values that incorporate adjustments for observed atmospheric measurements. The concept is conceptually more accurate, but it is difficult to measure the data needed for representative adjustments accurately. The scientific consensus recommends use of the modeled values.⁸

The regulatory values generally are required for specific purposes, but they may not be updated with newer findings after adoption. The ODP values listed in the annexes to the Montreal Protocol, for example, have not been updated since 1987 for chlorofluorocarbons (CFCs) and 1992 for hydrochlorofluorocarbons (HCFCs). A note in the Protocol indicates that the values "are estimates based on existing knowledge and will be reviewed and revised periodically."⁹

Time-dependent ODPs use chemicals other than CFC-11 as the reference. By normalizing values to shortlived compounds, for example, short-term impacts are emphasized; long-term effects are discounted. Time-dependent ODPs are not often cited—particularly because the release of ozone-depleting substances already has peaked, and the stratospheric ozone layer will begin to recover in the next few years.

GWP values can be calculated for any desired integration period, commonly referred to as the integration time horizon (ITH). Short ITH periods emphasize immediate effects but overlook later impacts, while long ITH periods incorporate the later effects. The most common GWP values, including those cited herein, are for an ITH of 100 years.

Time frames

The values cited for τ_{atm} , ODP, and GWP change as understanding of atmospheric science expands and the chemical kinetics involved become better understood. They also change when newer measurements are made for both specific and reference chemicals and as modeling of atmospheric chemistry improves. These factors have driven periodic reviews and consensus assessments by the scientific community. The data shown

in Tables 1 and 2 are based on the assessment published in February 1999 and consistent recalculations for the blends. **Differences in data**

One reason readers may see diverging values for environmental data—beyond differences associated with parameter choices and whether the data are current—has to do with accuracy. Some manufacturers and authors round off the data, and errors propagate when rounded values are used for blend calculations. Halocarbon or absolute GWP (HGWP and AGWP, respectively) values sometimes are mislabeled as GWPs.

ACKNOWLEDGMENT

The database from which the summary data in Tables 1 and 2 were extracted is a part of the HVACR Research for the 21st Century initiative, a research program of the Air-Conditioning and Refrigeration Technology Institute. The program's primary objective is to enable marked improvements in energy efficiency through precompetitive research. The focal areas include:

- alternative equipment
- equipment energy efficiency
- Indoor environmental quality (IEQ)
- system integration
- working fluids.

Innovative advancements in equipment will provide some of the energy and IEQ improvements. Others will stem from improved integration of air-conditioning and refrigeration processes into buildings and other applications. **HPAC**

REFERENCES

1) Calm, J. M., ARTI Refrigerant Database, Air-Conditioning and Refrigeration Technology Institute, Arlington, Va., Aug. 1999. The database is available to all interested parties; please refer to: www.arti-21cr.org/db/qa.html.

2) Calm, J. M., Property, Safety, and Environmental Data for Alternative Refrigerants, Proceedings of the Earth Technologies Forum (Washington, D.C., October 1998), Alliance for Responsible Atmospheric Policy, Arlington, Va., 192-205, October 1998.

3) ANSI/ASHRAE Standard 34-1997, Designation and Safety Classification of Refrigerants, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, Ga., 1997.

4) Coplen, T. B., and H. S. Peiser for the

International Union of Pure and Applied Chemistry Commission on Atomic Weights and Isotopic Abundances, "History of the Recommended Atomic Weight Values from 1882 to 1997: A Comparison of Differences from Current Values to the Estimated Uncertainties of Earlier Values," Pure and Applied Chemistry, 70(1):237-257, 1998.

5) Calm, J. M., and D. A. Didion, Trade-Offs in Refrigerant Selections— Past, Present, and Future, Refrigerants for the 21st Century (proceedings of the ASHRAE/NIST Conference, Gaithersburg, Md., October 1997), International Journal of Refrigeration, 21(4):308-321, June 1998.

6) World Meteorological Organization (WMO), Scientific Assessment of Ozone Depletion: 1998, chaired by D. L. Albritton, P. J. Aucamp, G. Mégie, and R. T. Watson, report 44, WMO Global Ozone Research and Monitoring Project, Geneva, Switzerland; United Nations Environment Program, Nairobi, Kenya; National Oceanic and Atmospheric Administration, Washington, D.C.; National Aeronautics and Space Administration, Washington, D.C.; and the European Commission, Directorate General XII—Science, Research and Development, Brussels, Belgium; February 1999.

7) Intergovernmental Panel on Climate Change, Climate Change (IPCC) 1995— Contribution of Working Group I to the Second Assessment Report of the IPCC, edited by J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell, Cambridge University Press, Cambridge, UK, 1996.

8) World Meteorological Organization (WMO), Scientific Assessment of Ozone Depletion: 1991, chaired by D. L. Albritton and R. T. Watson, report 25, WMO Global Ozone Research and Monitoring Project, Geneva, Switzerland; United Nations Environment Program, Nairobi, Kenya; United Kingdom Department of the Environment, London, UK; National Oceanic and Atmospheric Administration, Washington, D.C.; and the National Aeronautics and Space Administration, Washington, D.C.; 1991.

9) United Nations Environment Program (UNEP), 1997 Update of the Handbook for the International Treaties for the Protection of the Ozone Layer, UNEP Ozone Secretariat, Nairobi, Kenya, 1998.

Circle 504 on reader service card if this article was useful; circle 505 if it was not.

TABLE 1 — Summary Physical, Safety, and Environmental Data for Refrigerants (sorted by Standard 34 Designation)

ENGINEERING				phys	ical da	ta					afety d	environmental data				
	refrigerant		NB		T		P		TLV-			00	Std 34	atmos- pheric	ormerrea	
number	chemical formula or blend composition – common name	molec- ular mass	(°C)	(°F)	(°C)	(°F)	(MPa)		TWA (PPM)	LFL (%)	MJ/kg	Btu/lb	safety	life (yr)	ODP	GWP 100 yr
11 12B1	CCl3F CBrClF2 — halon 1211	137.37 165.36	23.7 -4.0	74.7 24.8	198.0 154.0	388.4 309.2	4.41 4.10	640 595	C1000 1000	none none	0.9	387	AI	45 11	1.000	4600 1300
12B2 12	CBr2F2 — halon 1202 CCl2F2	209.82 120.91	24.5 -29.8	76.1 -21.6	198.2 112.0	388.8 233.6	4.14	600	100 1000	none none	-0.8	-344	A1	100	1.700 0.820	10600
13B1	CBrF3 — halon 1301	148.91	-57.7	-71.9	67.1	152.8	3.96	574	1000	none			A1	65	12.000	6900
13 1311	CCLF3 CF3I	104.46 195.91	-81.3 -22.5	-114.3 -8.5	29.2 122.0	84.6 251.6	3.92	569	1000	none none	-3.0	-1290	AI	640 <0.1	1.000 0.000	10000 <1
14 21	CF4 - carbon tetrafluoride CHCl2F	88.00 102.92	-128.1 8.9	-198.6 48.0	-45.6 178.3	-50.1 352.9	3.75 5.18	544 751	10	none none			A1 B1	50000 2.0	0.000 0.010	5700 210
22	CHCLF2	86.47	-40.8	-41.4	96.2	205.2	4.99	724	1000	none	2.2	946	A1	11.8	0.034	1900
23 30	CHF3 — fluoroform CH2Cl2 — methylene chloride	70.01 84.93	-82.1 40.2	-115.8 104.4	25.9 237.0	78.6 458.6	4.84 6.08	702 882	1000 50	none 14.6	-12.5	-5374	A1 B2	243 0.46	0.000	14800 10
31 32	CH2ClF CH2F2 — methylene fluoride	68.48 52.02	-9.1 -51.7	15.6 -61.1	78.2	172.8	5.78	838	0.1 1000	13.3	9.4	4041	A2	5.6	0.010	880
40	CH3Cl — methyl chloride	50.49	-24.2	-11.6	143.1	289.6	6.67	967	50	8.1	7.4	4041	B2	1.3	0.020	16
41 50	CH3F — methyl fluoride CH4 — methane	34.03 16.04		-108.6 -258.7	44.1 -82.5	111.4 -116.5	5.90 4.64	856 673	1000	5			A3	3.7 12.2	0.000	140 24
113 114	CCl2FCClF2 CClF2CClF2	187.37 170.92	47.6 3.6	117.7 38.5	214.1 145.7	417.4 294.3	3.39 3.26	492 473	1000 1000	none none	0.1 -3.1	43 - 1333	A1 A1	85 300	0.900 0.850	6000 9800
115	CCLF2CF3	154.47	-38.9	-38.0	80.0	176.0	3.12	453	1000	none	-2.1	-903	A1	1700	0.400	10300
116 123	CF3CF3 — perfluoroethane CHCl2CF3	138.01 152.93	-78.2 27.8	-108.8 82.0	19.9 183.8	67.8 362.8	3.04 3.66	441 531	1000 50	none none	2.1	903	A1 B1	10000 1.4	0.000 0.012	11400 120
124 125	CHCLFCF3 CHF2CF3	136.48 120.02	-12.0 -48.1	10.4 -54.6	122.3	252.1	3.62 3.63	525 526	1000 1000	none none	0.9 -1.5	387 -645	A1 A1	6.1 32.6	0.026	620 3800
E125	CHF2-0-CF3	136.02	-42.0	-43.6	81.3	178.3	3.35	486						165	0.000	15300
134 134a	CHF2CHF2 CH2FCF3	102.03 102.03	-23.0 -26.1	-9.4 -15.0	119.0 101.1	246.2 214.0	4.62 4.06	670 589	1000 1000	none none	4.3 4.2	1849 1806	A1	10.6 13.6	0.000 0.000	1200 1600
E134 141b	CHF2-O-CHF2 CH3CCl2F	118.03 116.95	6.2 32.0	43.2 89.6	160.8 204.2	321.4 399.6	4.23 4.25	614 616	500	none 6.4	8.6	3697		29.7 9.2	0.000	6900 700
142b	CH3CCLF2	100.49	-9.0	15.8	137.1	278.8	4.12	598	1000	6.9	9.8	4213	A2	18.5	0.043	2300
143 143a	CH2FCHF2 CH3CF3	84.04 84.04	5.0 -47.2	41.0 -53.0	156.7 72.9	314.1 163.2	5.24 3.78	760 548	1000	5.8 7.1	10.9 10.3	4686 4428	A2	3.8 53.5	0.020	370 5400
E143a 152a	CH3-O-CF3 CH3CHF2	100.04 66.05	-24.1 -24.0	-11.4	104.9 113.3	220.8 235.9	3.59 4.52	521 656	1000	3.1	17.4	7481	A2	5.7 1.5	0.000	970 190
160	CH3CH2Cl — ethyl chloride	64.51	13.1	55.6	187.2	369.0	5.24	760	100	3.8	20.6	8856	~	<1	0.000	
161 170	CH3CH2F — ethyl fluoride CH3CH3 — ethane	48.06 30.07	-37.1 -88.6	-34.8 -127.5	102.2 32.2	216.0 90.0	4.70 4.87	682 706	1000	3.8 3.2			A3	0.25	0.000	10 ~20
E170 218	CH3-O-CH3 — dimethyl ether CF3CF2CF3 — perfluoropropane	46.07 188.02	-24.8 -36.6	-12.6 -33.9	128.8 71.9	263.8 161.4	5.32 2.68	772 389	1000 1000	3.4 none			A1	0.015 2600	0.000	<1 8600
227ea	CF3CHFCF3	170.03	-15.6	3.9	102.8	217.0	2.98	432	1000	none	3.3	1419		36.5	0.000	3800
236fa 245ca	CF3CH2CF3 CH2FCF2CHF2	152.04 134.05	-1.4 25.1	29.5 77.2	124.9 174.4	256.8 345.9	3.20 3.94	464 571	1000	none 7.1	8.4	3611	A1	226 6.6	0.000	9400 720
245 fa E245cb1	CHF2CH2CF3 CH3-0-CF2-CF3	134.05 150.05	15.1 5.6	59.2 42.1	154.1 133.7	309.4 272.7	4.43 2.89	643 419	500 p	none	6.1	2623	A1p r	8.8 1.2	0.000	820 160
C270	-CH2-CH2-CH2- — cyclopropane	42.08	-33.5	-28.3	125.2	257.4	5.58	809		none 2.4				1.2	0.000	
290 C318	CH3CH2CH3 — propane -CF2-CF2-CF2-CF2-	44.10 200.03	-42.1 -6.0	-43.8 21.2	96.7 115.2	206.1 239.4	4.25 2.78	616 403	2500 1000	2.3 none	50.3	21625	A3 d	3200	0.000	20° 11200
338mcc	CH2FCF2CF2CF3	202.05	27.8	82.0	158.8	317.8	2.73	396	1000					5200	0.000	11200
338mcf E347mmy1	CF3CH2CF2CF3 CF3-CF(OCH3)-CF3	202.05 200.05	19.9 29.4	67.8 84.9	150.6 160.2	303.1 320.4	2.50 2.55	363 370		none				3.5	0.000	340
400>	R-12/114 (50.0/50.0) - R-400(50/50)	141.63	-20.8	-5.4	128.9	264.0	3.92	569		none			A1/A1		0.835	10200
400>	R-12/114 (60.0/40.0) -	136.94	-23.2	-9.8	125.4	257.7	3.99	579		none			A1/A1		0.832	10280
401A	R-400(60/40) R-22/152a/124 (53.0/13.0/34.0)	94.44	-34.4	-29.9	105.3	221.5	4.61	669	1000	none			A1/A1		0.027	1240
401B	– MP39 R-22/152a/124 (61.0/11.0/28.0)	92.84	-35.7	-32.3	103.5	218.3	4.68	679	1000	none	-2.7	-1161	A1/A1		0.028	1350
	- MP66															
401C	R-22/152a/124 (33.0/15.0/52.0) - MP52	101.03			109.9		4.40	638		none	_		A1/A1		0.025	980
	R-22/152a/124 (40.0/17.0/43.0) - MP33	96.61	-31.9	-25.4	108.3	226.9	4.50	653		none	-3.7	- 1591			0.025	1060
402A	R-125/290/22 (60.0/2.0/38.0) - HP80	101.55	-49.2	-56.6	76.0	168.8	4.23	614		none	-1.4	-602	A1/A1		0.013	3000
402B	R-125/290/22 (38.0/2.0/60.0) -	94.71	-47.2	-53.0	83.0	181.4	4.53	657		none	-1.6	-688	A1/A1		0.020	2580
403A	HP81 R-290/22/218 (5.0/75.0/20.0) —	91.99	-44.0	-47.2	91.2	196.2	4.69	680	1000	none			A1/A1		0.026	3150
403B	69-S R-290/22/218 (5.0/56.0/39.0) -	103.26		-46.8	88.7	191.7		638	1000	none			A1/A1		0.019	4420
	69-L										- 6 1	. 2077				
404A	R-125/143a/134a (44.0/52.0/4.0) - HP62 and FX-70	97.60		-51.9		161.8	3.74	542	1000	none	-6.6	-2837	A1/A1		0.000	4540
405A	R-22/152a/142b/C318 (45.0/7.0/5.5/42.5) — G2015	111.91	-32.9	-27.2	106.0	222.8	4.29	622	1000	none			d		0.018	5750
406A	R-22/600a/142b (55.0/4.0/41.0)	89.86	-32.7	-26.9	116.5	241.7	4.88	708		wff			A1/A2		0.036	1990
	- GNG R-22/600a/142b (65.0/4.0/31.0)	88.57	-35.0	-31.0	112.2	234.0	4.95	718		wff					0.035	195 0
407A	- GHG-HP R-32/125/134a (20.0/40.0/40.0)	90.11	-45.2	-49.4	81.9	179.4	4.49	651	1000	none	-3.6	- 1548	A1/A1		0.000	2340
	- Klea 60															
407B	R-32/125/134a (10.0/70.0/20.0) — Klea 61	102.94	-46.8			165.9	4.08	592	1000	none	-1.8	-774			0.000	3070
407C	R-32/125/134a (23.0/25.0/52.0) — Klea 66; Suva 9000	86.20	-43.8	-46.8	87.3	189.1	4.63	672	1000	none	-4.9	-2107	A1/A1		0.000	1980
407D	R-32/125/134a (15.0/15.0/70.0)	90.96	-39.4			196.9	4.48	650	1000		-4.3		A1/A1		0.000	
407E	R-32/125/134a (25.0/15.0/60.0) R-32/125/134a (30.0/10.0/60.0)	83.78 80.13	-42.8 -43.4	-45.0 -46.1		191.8 192.4	4.73 4.87	686 706	1000	none wff	-4.8	-2064	A1/A1		0.000	1750 1600
408A	R-125/143a/22 (7.0/46.0/47.0) - FX-10	87.01		-49.9		181.9	4.42	641		none	5.7	2451	A1/A1		0.016	
409A	R-22/124/142b (60.0/25.0/15.0)	97.43	-35.4	-31.7	106.9	224.4	4.69	680	1000	none	3.0	1290	A1/A1		0.039	1640
409B	- FX-56 R-22/124/142b (65.0/25.0/10.0)	96.67	-36.5	-33.7	104.4	219.9	4.71	683		none			A1/A1		0.033	1620
	- FX-57												,	conti		
														CONTI	nued on i	next page

ENGINEE		physical data				ata			· · ·	s	afety d	lata	environmental data			
	refrigerant	molec-	N	BP	Tc		Pc		TLV-			00	Std 34	atmos- pheric		
number	chemical formula or blend composition – common name	ular mass	(°C)	(°F)	(°C)	(°F)	(MPa)	(psia)	TWA (PPM)	LFL (%)	MJ/kg	Btu/lb	safety group	lîfe (yr)	ODP	GWP 100 yr
410A	R-32/125 (50.0/50.0) - Suva 9100; AZ-20	72.58	-51.6	-60.9		162.5	4.95	718	1000	none	-4.4	- 1892	A1/A1		0.000	2340
410B	R-32/125 (45.0/55.0) R-32/125 (32.0/68.0) - FX-80	75.57 84.63	-51.5	-60.7 -60.0	71.0 67.7		4.78 4.40	693 638		none			A1/A1		0.000	2490 2870
411A 411B	R-1270/22/152a (1.5/87.5/11.0) R-1270/22/152a (3.0/94.0/3.0)	82.36 83.07	-39.7 -41.6	-39.5 -42.9	99.1 96.0		4.95 4.95	718 718	1000 1000	wff wff	6.5	2794	A1/A2 A1/A2		0.030	1680 1790
411C	R-1270/22/152a (3.0/95.5/1.5) - G2018C	83.44	-41.8	-43.2	95.5	203.9	4.95	718		none			A1/A1r		0.032	1820
412A	R-22/218/142b (70.0/5.0/25.0) - Arcton TP5R	92.17	-36.4	-33.5		225.5	4.88	708	1000	wff			A1/A2		0.035	2340
413A 414A	R-218/134a/600a (9.0/88.0/3.0) - ISCEON 49 R-22/124/600a/142b	103.95 96.93	-29.3			214.5	4.24	615 682	1000	wff	7 (45/0	A1/A2		0.000	2180
414A	(51.0/28.5/4.0/16.5) - GHG-X4 R-22/124/600a/142b	101.59	-34.0 -34.4	-29.2 -29.9	108.0	231.3	4.70 4.59	666	1000		3.6	1548	A1/A1r		0.032	1530
	(50.0/39.0/1.5/9.5) - HOT SHOT R-23/22/152a (5.0/80.0/15.0) -	81.72	-47.0	-52.6		207.0	5.04	731	1000	none wff			A1/A1r		0.031	1410 2290
	NARM-22 R-23/22/152a (5.0/90.0/5.0) -	84.18	-48.4	-55.1	94.4		5.10	740	1000	none					0.027	2460
416A	NARM-502 R-134a/124/600 (59.0/39.5/1.5)	111.92	-23.4	-10.1	108.2		4.02	583	1000	Tione	7.8	3353	A1/A1r		0.010	1190
	- FR-12 R-134a/124/600 (59.0/39.0/2.0)	111.31	-23.4	-10.1	108.6		4.04	586		wff		2000	,		0.010	1190
	- DI-24 R-125/134a/600 (46.6/50.0/3.4)	106.75	-38.0		89.9		4.10	595		none					0.000	2570
	- Isceon 59 R-125/143a/290/22	95.70		-53.9	81.0		4.45	645	1000	none					0.017	2870
	(42.0/6.0/2.0/50.0) - DI-44 R-134a/142b (80.0/20.0) -	101.71	-24.1	-11.4	107.5		4.12	598		none					0.010	1400
	Freeze R-170/290 (6.0/94.0) - ER22/502	42.90	-50.0	-58.0	91.2		4.29	622		1.9					0.000	~21
	R-22/12/142b (25.0/15.0/60.0) - R-176	98.99	-26.9	-16.4	129.4		5.10	740	1000	wff					0.157	3450
	R-22/124/600 (50.0/47.0/3.0) - DI-36	102.64	-34.8	-30.6	102.6		4.56	661	900	none					0.029	1240
	R-22/142b (40.0/60.0) R-22/227ea/600a/142b (41.0/40.0/4.0/15.0 - GHG-X5	94.37 107.82	-27.9 -32.4	-26.3	123.1 108.2		4.72 4.37	685 634		wff					0.039 0.020	2140 2640
	R-23/125/143a (20.0/36.0/44.0) - ES20	90.16	-64.8	-84.6	67.3	153.1	4.03	585							0.000	6700
	R-23/32/134a (4.5/21.5/74.0) - FX-220	83.14	-42.2	-44.0	89.0	192.2	4.90	711		none					0.000	2040
	R-290/124/123 (3.0/40.0/57.0) R-290/600 (60.0/40.0 by liquid volume) — 0Z-12	136.27 48.81	-15.3	4.5	151.1	304.0	3.99	579							0.017 0.000	320 ~20
	R-290/600a (50.0/50.0) R-32/125/143a (10.0/45.0/45.0) - FX-40	50.15 90.69	-32.8 -48.4	-27.0 -55.1	114.8 72.0	238.6 161.6	4.04 4.05	586 587		2 none					0.000	~20 4230
	- FX-40 R-32/125/143a/134a (10.0/33.0/36.0/21.0) - HX4	90.80	-49.4	-56.9	77.5	171.5	4.01	582		none					0.000	3620
	R-32/134a (25.0/75.0) R-32/134a (30.0/70.0)	82.26 79.19	-40.3 -41.8	-40.5 -43.2	93.7 92.4	200.7 198.3	4.83 4.94	701 716	1000	wff wff					0.000	1420 1380
	R-600a/600 (50.0/50.0) - isobutane/butane	58.12	-6.5	20.3	143.6		3.73	541	1000	1.8					0.000	~20
500 501	R-12/152a (73.8/26.2) R-22/12 (75.0/25.0)	99.30 93.10	-33.6 -40.5	-28.5 -40.9	102.1 96.2	215.8 205.2	4.17 4.76	605 690	1000	none none			A1 A1		0.605	7870 4080
502 503	R-22/115 (48.8/51.2) R-23/13 (40.1/59.9)	111.63 87.25		-49.5 -125.5	80.7 18.4	177.3 65.1	4.02 4.27	583 619	1000 1000	none none			A1		0.221	6200 14300
504 505	R-32/115 (48.2/51.8) R-12/31 (78.0/22.0)	79.25 103.48	-57.7	-71.9 -22.0	62.1 117.8	143.8 244.0	4.44	644 686		none none					0.207	5760
506 507A	R-31/114 (55.1/44.9) R-125/143a (50.0/50.0) — AZ-50	93.69 98.86	-12.3 -47.1	9.9 -52.8	142.2 70.9	288.0	5.16 3.79	748 550		none none	-5.5	-2365	A1		0.387	4600
508A 508B	R-23/116 (39.0/61.0) - Klea 5R3 R-23/116 (46.0/54.0) - Suva 95	100.10 95.39		-125.3	11.0 14.0	51.8 57.2	3.70 3.93	537 570	1000 1000	none none			A1 A1/A1		0.000	12700 13000
509A	R-22/218 (44.0/56.0) – Arcton TP5R2	123.96	-40.4	-40.7	87.2	189.0	4.03	585	1000	none			A1		0.015	5650
	R-134a/600a (80.0/20.0) — Electrolux RC	88.64	-29.5	-21.1			4.81	698		3.9					0.000	1280
600 600a	CH3-CH2-CH2-CH3 — butane CH(CH3)2-CH3 — isobutane	58.12 58.12	-0.5 -11.6	31.1 11.1	134.7		3.80 3.64	551 528	800 800	1.9 1.8	49.5 49.4	21281 21238	A3 A3		0.000	~20 ~20
601 601a	CH3-CH2-CH2-CH2-CH3 — pentane (CH3)2CH-CH2-CH3 — isopentane	72.15 72.15	36.2 27.8	97.2 82.0		369.3	3.36 3.37	487 489	600 600	1.4 1.4				<<1	0.000	11
601b 610	(CH3)4C — neopentane CH3-CH2-O-CH2-CH3 — ethyl ether	72.15 74.12	9.5 34.6		214.0	321.1 417.2	3.20 6.00	464 870	600 400	1.4 1.9					0.000	
611 630	HCOOCH3 — methyl formate CH3(NH2) — methylamine	60.05 31.06	31.8 -6.7	19.9	156.9	417.2 314.4	5.99 7.46	869 1082	100 5	5.1 4.9			B2		0.000	
631 704	CH3-CH2(NH2) — ethylamine He — helium	45.08 4.00		-452.0	-267.9		5.62 0.23	815 33	5	3.5 none			A1		0.000	
717 718	NH3 - ammonia H2O - water	17.03 18.02	100.0	-27.9 212.0	374.2	705.6	11.34 22.10	1645 3205	25	14.8 none	22.5	9673	B2 A1		0.000	<1 <1
729 744	air CO2 — carbon dioxide	28.97 44.01	-78.4	-317.9 -109.1	31.1	88.0	3.77 7.38	547 1070	5000	none none			A1	>50	0.000	0 1
764 11 3 0	SO2 – sulfur dioxide CHCl=CHCl – dielene	64.06 96.94		14.0 118.0	243.3	315.5 469.9	7.88 5.48	1143 795	2 200	none 5.6			B1		0.000	
1150 1270	CH2=CH2 — ethylene CH3CH=CH2 — propylene	28.05 42.08	-109.4		9.3 92.4	48.7 198.3	5.11 4.67	741 677	1000 375	2.7 2.0			АЗ ВЗ г		0.000	
	mal boiling point; Tc = critical	tompore	turos	Po = 01	itical	DEGGGUID		V-TUA -	ACCTH	Threak	aldlin	it Value		I la i alta a d	Å	

NBP = normal boiling point; Tc = critical temperature; Pc = critical pressure; TLV-TWA = ACGIH Threshold Limit Value - Time-Weighted Average, or consistent chronic exposure limit (e.g., OSNA Permissible Exposure Limit, PEL), unless preceded by "C" for TLV-Ceiling; LFL = lower flammability limit (% volume in air), "wff" signifies that the worst case of fractionation may become flammable; HOC = heat of combustion; ODP = ozone depletion potential (modeled); GWP = global warming potential (for 100 yr integration)

Suffixes to safety classifications indicate recommended changes that are not final yet ("d" for deletion and "r" for revision or addition) or classifications assigned as provisional ("p").

Data sources are identified in the Refrigerant Database; verify the data and associated limitations in those sources before use. (C) JM

TABLE 2 — Summary Physical, Safety, and Environmental Data for Refrigerants (sorted by Boiling Point)

				phys	sical da	ata				:	afety o		<u>environmental data</u> atmos-			
	refrigerant chemical formula or blend	molec- ular		<u>BP</u>		ic	P		TLV- TWA	LFL			Std 34 safety	pheric life		GWP
number	composition - common name	mass	(°C)	(°F)	(°C)	(°F)	(MPa) ((PPM)		MJ/Kg	Btu/lb	group	<u>(yr)</u>	ODP	<u>100 yr</u>
704 729 50 14	He - helium air CH4 - methane CF4 - carbon tetrafluoride	4.00 28.97 16.04 88.00	-194.4 -161.5	-452.0 -317.9 -258.7 -198.6	-267.9 -140.7 -82.5 -45.6	-221.3	0.23 3.77 4.64 3.75	33 547 673 544	1000	none none 5 none			A1 A3 A1	12.2 50000	0.000 0.000 0.000 0.000	0 24 5700
1150	CH2=CH2 - ethylene	28.05	-109.4	-164.9	9.3	48.7	5.11	741	1000	2.7			A3	30000	0.000	
170 503 508A	CH3CH3 — ethane R-23/13 (40.1/59.9) R-23/116 (39.0/61.0) — Klea 5R3	30.07 87.25 100.10	-87.5	-127.5 -125.5 -125.3	32.2 18.4 11.0	90.0 65.1 51.8	4.87 4.27 3.70	706 619 537	1000 1000 1000	3.2 none none			A3 A1		0.000 0.599 0.000	~20 14300 12700
5088 23	R-23/116 (46.0/54.0) — Suva 95 CHF3 — fluoroform	95.39 70.01	-82.1	-125.3 -115.8	14.0 25.9	57.2 78.6	3.93 4.84	570 702	1000 1000	none none	-12.5	-5374	A1/A1 A1	243	0.000	13000 14800
13 744	CClF3 CO2 - carbon dioxide	104.46 44.01		-114.3	29.2 31.1	84.6 88.0	3.92 7.38	569 1070	1000 5000	none none	-3.0	-1290	A1 A1	640 >50	1.000	10000 1
116 41	CF3CF3 – perfluoroethane CH3F – methyl fluoride R-23/125/143a (20.0/36.0/44.0) – ES20	138.01 34.03 90.16		-108.8 -108.6 -84.6	19.9 44.1 67.3	67.8 111.4 153.1	3.04 5.90 4.03	441 856 585	1000	none			A1	10000 3.7	0.000 0.000 0.000	11400 140 6700
13B1 504	CBrF3 — halon 1301 R-32/115 (48.2/51.8)	148.91 79.25	-57.7 -57.7	-71.9	67.1 62.1	152.8 143.8	3.96 4.44	574 644	1000	none none			A1	65	12.000	6900 5760
32 410a	CH2F2 — methylene fluoride R-32/125 (50.0/50.0) — Suva	52.02 72.58	-51.7 -51.6		78.2 72.5		5.78 4.95	838 718	1000 1000	13.3 none	9.4 -4.4	4041 - 1892		5.6	0.000 0.000	880 2340
410B	9100; AZ-20 R-32/125 (45.0/55.0)	75.57	-51.5		71.0	159.8	4.78	693		none			A1/A1		0.000	2490
_	R-32/125 (32.0/68.0) - FX-80 R-170/290 (6.0/94.0) - ER22/502 R-32/125 (1/32)	84.63 42.90	-51.1	-58.0	67.7 91.2	196.2	4.40	638 622		1.9					0.000	2870 ~21 7420
402A	R-32/125/143a/134a (10.0/33.0/36.0/21.0) - HX4 R-125/290/22 (60.0/2.0/38.0) -	90.80 101.55	-49.4 -49.2		77.5 76.0	171.5 168.8	4.01 4.23	582 614		none	-1.4	-602	A1/A1		0.000	3620 3000
	HP80 R-32/125/143a (10.0/45.0/45.0) - FX-40	90.69	-48.4	-55.1	72.0	161.6	4.05	587		none					0.000	4230
—	R-23/22/152a (5.0/90.0/5.0) - NARM-502	84.18	-48.4	-55.1	94.4	201.9	5.10	740	1000	none					0.031	246
125 1270	CHF2CF3 CH3CH=CH2 - propylene R-125/143a/290/22	120.02 42.08 95.70	-48.1 -47.7 -47.7	-53.9	66.2 92.4 81.0	198.3	3.63 4.67 4.45	526 677 645	1000 375 1000	none 2.0 none	-1.5	-645	А1 В3 г	32.6	0.000 0.000 0.017	3800 2870
143a 402B	(42.0/6.0/2.0/50.0) - DI-44 CH3CF3 R-125/290/22 (38.0/2.0/60.0) -	84.04 94.71	-47.2		72.9 83.0		3.78 4.53	548 657	1000	7.1 none	10.3 -1.6	4428 -688		53.5	0.000	540 258
507A	HP81 R-125/143a (50.0/50.0) - AZ-50	98.86	-47.1		70.9			550		none	-5.5	-2365			0.000	4600
/ 0.70	R-23/22/152a (5.0/80.0/15.0) - NARM-22	81.72	-47.0		97.2		5.04	731	1000	wff					0.027	229
407B 404A	R-32/125/134a (10.0/70.0/20.0) - Klea 61 R-125/143a/134a (44.0/52.0/4.0)	102.94 97.60	-46.8 -46.6		74.4	165.9 161.8	4.08	592 542	1000 1000	none	-1.8 -6.6	-774 -2837	A1/A1		0.000	3070 4540
408A	- HP62 and FX-70 R-125/143a/22 (7.0/46.0/47.0) -	87.01	-45.5		83.3		4.42	641	1000	none	5.7				0.016	
502 407A	FX-10 R-22/115 (48.8/51.2) R-32/125/134a (20.0/40.0/40.0)	111.63 90.11	-45.3 -45.2		80.7 81.9		4.02 4.49	583 651	1000 1000	none none	-3.6	- 1548	A1 A1/A1		0.221	
403A	– Klea 60 R-290/22/218 (5.0/75.0/20.0) –	91.99	-44.0		91.2		4.69	680	1000	none		1940	A1/A1		0.026	
403B	69-S R-290/22/218 (5.0/56.0/39.0) -	103.26	-43.8	-46.8	88.7	191.7	4.40	638	1000	none			A1/A1		0.019	442
407C	69-L R-32/125/134a (23.0/25.0/52.0) - Klea 66; Suva 9000	86.20	-43.8	-46.8	87.3	189.1	4.63	672	1000	none	-4.9	-2107	A1/A1		0.000	198
407E	R-32/125/134a (30.0/10.0/60.0) R-32/125/134a (25.0/15.0/60.0) R-23/32/134a (4.5/21.5/74.0) -	80.13 83.78 83.14	-43.4 -42.8 -42.2	-45.0	89.1 88.8 89.0	191.8	4.87 4.73 4.90	706 686 711	1000	wff none none	-4.8	-2064	A1/A1		0.000 0.000 0.000	175
290	FX-220 CH3CH2CH3 — propane	44.10	-42.1	-43.8	96.7	206.1	4.25	616	2500	2.3	50.3	21625	A3		0.000	~2
E125	CHF2-0-CF3 R-32/134a (30.0/70.0)	136.02 79.19	-42.0 -41.8				3.35 4.94	486 716	1000	wff				165	0.000	
411C	R-1270/22/152a (3.0/95.5/1.5) - G2018C	83.44	-41.8					718		none			A1/A1r		0.032	
411B 22	R-1270/22/152a (3.0/94.0/3.0) CHClF2	83.07 86.47	-41.6 -40.8	-41.4	96.0 96.2	205.2	4.99	718 724	1000 1000	wff none	6.5 2.2			11.8		190
501 509A	R-22/12 (75.0/25.0) R-22/218 (44.0/56.0) - Arcton TP5R2	93.10 123.96	-40.5 -40.4	-40.7		189.0	4.03	690 585	1000	none none			A1 A1		0.231 0.015	565
411A 407D	R-32/134a (25.0/75.0) R-1270/22/152a (1.5/87.5/11.0) R-32/125/134a (15.0/15.0/70.0)	82.26 82.36 90.96	-40.3 -39.7 -39.4	-39.5	93.7 99.1 91.6	210.4	4.83 4.95 4.48	701 718 650	1000 1000	wff wff	./ 7	. 10/0	A1/A2 A1/A1		0.000 0.030 0.000	168
115	CCLF2CF3 R-125/134a/600 (46.6/50.0/3.4) – Isceon 59	154.47	-38.9 -38.0	-38.0	80.0 89.9	176.0	3.12	453 595	1000	none none none			A1/A1 A1	1700	0.400	103
161 218 409в	CH3CH2F – ethyl fluoride CF3CF2CF3 – perfluoropropane R-22/124/142b (65.0/25.0/10.0)	48.06 188.02 96.67	-37.1 -36.6 -36.5	-33.9	71.9		2.68	682 389 683	1000	3.8 none none			A1 A1/A1	0.25 2600	0.000 0.000 0.033	860
412A	- FX-57 R-22/218/142b (70.0/5.0/25.0) -	92.17	-36.4	-33.5	107.5	225.5	4.88	708	1000	wff			A1/A2		0.035	234
401B	Arcton TP5R R-22/152a/124 (61.0/11.0/28.0) — MP66	92.84	-35.7	-32.3	103.5	218.3	4.68	679	1000	none	-2.7	-1161	A1/A1		0.028	135
409 A	R-22/124/142b (60.0/25.0/15.0) - FX-56	97.43	-35.4	-31.7	106.9	224.4	4.69	680	1000	none	3.0	1290	A1/A1		0.039	16
	R-22/600a/142b (65.0/4.0/31.0) — GHG-HP	88.57	-35.0		112.2		4.95	718		Wff					0.035	
	R-22/124/600 (50.0/47.0/3.0) - DI-36	102.64	-34.8		102.6			661	900						0.029	
401 A	R-22/152a/124 (53.0/13.0/34.0) - MP39	94.44	-34.4	-29.9	105.3	221.5	4.61	669	1000	none			A1/A1		0.027	124

32

ENGINEE	RING	physical data					safety data										
	refrigerant	molec-				C	P	c	TLV-			HOC	Std 34	atmos- pheric			
number	chemical formula or blend composition – common name	ular mass	(°C)	(°F)	(°C)	(°F)	(MPa) (nsia)	TWA (PPM)	LFL (%)	M.I/ka	8tu/lb	safety	life (yr)	ODP	GWP 100 yr	
414B	R-22/124/600a/142b	101.59	-34.4	-29.9	108.0		4.59	666			ne, kg	b cuy to	A1/A1r		0.031	1410	
	(50.0/39.0/1.5/9.5) - HOT SHOT								4000	none	- /	45/0					
414A	R-22/124/600a/142b (51.0/28.5/4.0/16.5) - GHG-X4	96.93	-34.0		110.7		4.70	682	1000		3.6	1548			0.032	1530	
500 C270	R-12/152a (73.8/26.2) -CH2-CH2-CH2- — cyclopropane	99.30 42.08	-33.6 -33.5	-28.5 -28.3	102.1	215.8 257.4	4.17 5.58	605 809	1000	none 2.4			A1		0.605	7870	
717 405a	NH3 — ammonia R-22/152a/142b/C318	17.03 111.91	-33.3	-27.9	132.3 106.0	270.1	11.34 4.29	1645 622	25 1000	14.8 none	22.5	9673	B2 d		0.000	<1 5750	
4034	(45.0/7.0/5.5/42.5) - G2015								1000				u				
406A	R-290/600a (50.0/50.0) R-22/600a/142b (55.0/4.0/41.0)	50.15 89.86	-32.8 -32.7	-27.0	114.8 116.5	238.6 241.7	4.04 4.88	586 708		2 wff			A1/A2		0.000	~20 1990	
	– GHG R-22/227ea/600a/142b	107.82	-32.4	-26.3	108.2	226.8	4.37	634							0.020	2640	
	(41.0/40.0/4.0/15.0 - GHG-X5 R-22/152a/124 (40.0/17.0/43.0)	96.61	-31.9	-25.4	108.3	226.9	4,50	653		none	-3.7	- 1591			0.025	1060	
401C	- MP33 R-22/152a/124 (33.0/15.0/52.0)	101.03	-30.5	-22.9	109.9		4.40	638					A1 /A1		0.025	980	
	- MP52									none			A1/A1			900	
505 12	R-12/31 (78.0/22.0) CCl2F2	103.48 120.91	-30.0 -29.8	-22.0 -21.6	117.8 112.0	244.0 233.6	4.73 4.14	686 600	1000	none	-0.8	-344	A1	100	0.642	10600	
	R-134a/600a (80.0/20.0) — Electrolux RC	88.64	-29.5	-21.1	111.3	232.3	4.81	698		3.9					0.000	1280	
413A	R-218/134a/600a (9.0/88.0/3.0) - ISCEON 49	103.95	-29.3	-20.7	101.4	214.5	4.24	615		wff			A1/A2		0.000	2180	
	R-22/142b (40.0/60.0)	94.37	-27.9		123.1	253.6	4.72	685		wff					0.039	2140	
	R-22/12/142b (25.0/15.0/60.0) - R-176	98.99	-26.9	-16.4	129.4	264.9	5.10	740	1000	wff					0.157	3450	
134a E170	CH2FCF3 CH3-O-CH3 — dimethyl ether	102.03 46.07	-26.1 -24.8	-15.0	101.1 128.8	214.0 263.8	4.06 5.32	589 772	1000 1000	none 3.4	4.2	1806	A1	13.6 0.015	0.000	1600 <1	
40 E143a	CH3Cl — methyl chloride CH3-O-CF3	50.49	-24.2	-11.6	143.1	289.6	6.67	967 521	50	8.1			B2	1.3	0.020	16	
E 143a	R-134a/142b (80.0/20.0) -	100.04 101.71	-24.1 -24.1	-11.4 -11.4		220.8 225.5	3.59 4.12	598						5.7	0.000 0.010	970 1400	
152a	Freeze CH3CHF2	66.05	-24.0	-11.2	113.3	235.9	4.52	656	1000	3.1	17.4	7481	A2	1.5	0.000	190	
416A	R-134a/124/600 (59.0/39.5/1.5) - FR-12	111.92	-23.4	-10.1	108.2	226.8	4.02	583			7.8				0.010	1190	
	R-134a/124/600 (59.0/39.0/2.0) - DI-24	111.31	-23.4	-10.1	108.6	227.5	4.04	586		wff					0.010	1190	
400 ->	R-12/114 (60.0/40.0) -	136.94	-23.2	-9.8	125.4	257.7	3.99	579		none			A1/A1		0.832	10280	
134	R-400(60/40) CHF2CHF2	102.03	-23.0	-9.4	119.0	246.2	4.62	670	1000	none	4.3	1849		10.6	0.000	1200	
13I1 400>	CF3I R-12/114 (50.0/50.0) -	195.91 141.63	-22.5 -20.8	-8.5 -5.4		251.6 264.0	3.92	569		none none			A1/A1	<0.1	0.000	<1 10200	
	R-400(50/50)												A1/A1				
227ea	CF3CHFCF3 R-290/124/123 (3.0/40.0/57.0)	170.03 136.27	-15.6 -15.3	3.9 4.5		217.0 304.0	2.98 3.99	432 579	1000	none	3.3	1419		36.5	0.000 0.017	3800 320	
506 124	R-31/114 (55.1/44.9) CHClFCF3	93.69 136.48	-12.3 -12.0	9.9 10.4		288.0 252.1	5.16 3.62	748 525	1000	none none	0.9	387	A1	6.1	0.387	620	
600a	CH(CH3)2-CH3 — isobutane	58.12	-11.6	11.1	134.7	274.5	3.64	528	800	1.8	49.4		A3		0.000	~20	
764 31	SO2 — sulfur dioxide CH2ClF	64.06 68.48	-10.0 -9.1	14.0 15.6	157.5	315.5	7.88	1143	2 0.1	none			B1		0.000		
142b 630	CH3CClF2 CH3(NH2) — methylamine	100.49 31.06	-9.0 -6.7	15.8 19.9		278.8	4.12 7.46	598 1082	1000 5	6.9 4.9	9.8	4213	A2	18.5	0.043	2300	
	R-600a/600 (50.0/50.0) -	58.12	-6.5	20.3		290.5	3.73	541	-	1.8					0.000	~20	
C318	isobutane/butane -CF2-CF2-CF2-CF2-	200.03	-6.0		115.2		2.78	403	1000	none			d	3200	0.000	11200	
12B1 236fa	CBrClF2 — halon 1211 CF3CH2CF3	165.36 152.04	-4.0 -1.4	24.8 29.5	154.0 124.9		4.10 3.20	595 464	1000 1000	none			A1	11 226	5.100 0.000	1300 9400	
600	CH3-CH2-CH2-CH3 — butane R-290/600 (60.0/40.0 by liquid	58.12 48.81	-0.5	31.1	152.0	305.6	3.80	551	800	1.9	49.5	21281	A3		0.000	~20 ~20	
114	volume) - OZ-12	170.92	3.6	38.5	145.7	294.3	3.26	473	1000	none	-3.1	-1333	A1	300	0.850	9800	
143	CCLF2CCLF2 CH2FCHF2	84.04	5.0	41.0	156.7	314.1	5.24	760	1000	5.8	10.9		A1	3.8	0.020	370	
E245cb1 E134	CH3-O-CF2-CF3 CHF2-O-CHF2	150.05 118.03	5.6 6.2	42.1 43.2		272.7	2.89 4.23	419 614		none				1.2 29.7	0.000	160 6900	
21 601b	CHCl2F (CH3)4C — neopentane	102.92 72.15	8.9 9.5	48.0 49.1		352.9 321.1	5.18 3.20	751 464	10 600	none 1.4			B1	2.0	0.010	210	
160	CH3CH2Cl — ethyl chloride	64.51	13.1	55.6	187.2	369.0	5.24	760	100	3.8	20.6		41	<1	0.000	870	
245fa 631	CHF2CH2CF3 CH3-CH2(NH2) — ethylamine	134.05 45.08	15.1 16.6	59.2 61.9	183.0		4.43 5.62	643 815	500 p 5	none 3.5		2023	A1p r	8.8	0.000	820	
338mcf 11	CF3CH2CF2CF3 CCl3F	202.05 137.37	19.9 23.7	67.8 74.7		303.1 388.4	2.50	363 640	C1000	none	0.9	387	A1	45	0.000	4600	
12B2 245ca	CBr2F2 — halon 1202 CH2FCF2CHF2	209.82	24.5 25.1	76.1		388.8	3.94	571	100	none 7.1				6.6	1.700	720	
123	CHCL2CF3	152.93	27.8	82.0	183.8	362.8	3.66	531	50	none			B1	1.4	0.012	120	
338mcc 601a	CH2FCF2CF2CF3 (CH3)2CH-CH2-CH3 — isopentane	202.05 72.15	27.8 27.8	82.0 82.0	187.4	317.8 369.3	2.73 3.37	396 489	600	1.4					0.000		
E347mmy1 611	CF3-CF(OCH3)-CF3 HCOOCH3 - methyl formate	200.05 60.05	29.4 31.8	84.9 89.2		320.4	2.55 5.99	370 869	100	5.1			B2	3.5	0.000	340	
141b 610	CH3CCL2F	116.95	32.0 34.6	89.6	204.2	399.6	4.25	616 870	500 400	6.4 1.9		3697		9.2	0.086	700	
601	CH3-CH2-O-CH2-CH3 - ethyl ether CH3-CH2-CH2-CH2-CH3 - pentane	74.12	36.2	97.2	196.4	385.5	6.00 3.36	487	600	1.4				<<1	0.000	11	
30 113	CH2Cl2 – methylene chloride CCl2FCClF2	84.93 187.37	40.2 47.6			458.6 417.4	6.08 3.39	882 492	50 1000	14.6 none		43	82 A1	0.46 85	0.000	10 6000	
1130 718	CHCl=CHCl — dielene H2O — water	96.94 18.02	47.8	118.0	243.3	469.9	5.48 22.10	795	200	5.6 none			A1		0.000	<1	
	mai boiling point: Tc = critica																

NBP = normal boiling point; Tc = critical temperature; Pc = critical pressure; TLV-TWA = ACGIH Threshold Limit Value - Time-Weighted Average, or consistent chronic exposure limit (e.g., OSHA Permissible Exposure Limit, PEL), unless preceded by "C" for TLV-Ceiling; LFL = lower flammability limit (% volume in air), "wff" signifies that the worst case of fractionation may become flammable; HOC = heat of combustion; ODP = ozone depletion potential (modeled); GWP = global warming potential (for 100 yr integration)

Suffixes to safety classifications indicate recommended changes that are not final yet ("d" for deletion and "r" for revision or addition) or classifications assigned as provisional ("p").

Data sources are identified in the Refrigerant Database; verify the data and associated limitations in these sources before use. (C)