Federal Study Quantifies Efficiency Losses Due to Improper HVAC QI

[Poor Installations Undermine Equipment Efficiency] [U.S. Contribution to the IEA Annex 36 on QI / QM]

> Glenn C. Hourahan, P.E. Sr. Vice President, ACCA

ACCA 2015 Conference & Convention

Grapevine, TX 18 Mar 2015

Presentation Overview			
Торіс	Min		
Marketplace realities for subpar installations	~5		
 Federal study quantifies the problem IEA Annex 36 QI / QM overview NIST Contribution 	~30		
Preserving equipment performance Manuals & standards industry practice Accreditation industry polices itself 	~10		
Q & A	?		

Market Realities ... Practitioner 'Rules of Thumb'

500 ft² / ton (equipment sizing)

400 CFM / ton (airflow)

0.10 friction rate (duct sizing)

 $\frac{1}{2}$ CFM / ft² (air delivery)

20°F delta across the coil (airflow)

"Beer can cold" (refrigerant charge)

Leads to oversized equipment, undersized ducts, hot / cold rooms, and inefficient operation!

Generally Accepted Wisdom on the Impact of Improper QI / QM

-30% is lost out of the Box !!

Commonly-noted field problems	Magnitude
Refrigerant charge	Up to 30% off of OEM design
Incorrect airflow over the coil	Up to 50% off of design
Equipment size	Routinely 100% too big
Duct sizing	Routinely 1/2 the requirements
Duct Leakage	Up to 50% of airflow
etc.	

ACCA 2015 Annual Conference 18 Mar 2015

Compounding Impacts on HVAC

Geographical- or policy-focused

- Weather / climate issues
- Regional standards / optimizations
- Smart grid applications

Equipment-focused

- Multiple- and variable-speed equipment
- Inverter drives
- Variable refrigerant flow

becomes even more important!

QI and QM

- ACCA / NIST / ORNL were co-Operating Agents
- 4 year effort: Oct 2010 Oct 2014

Annex 36	Focus Area	Work Emphasis
Participant		
France	EdF – Space heating and water heating applications.	Field: Customer feedback survey on HP system installations, maintenance, and after-sales service. Lab: Water heating performance tests on sensitivity parameters and analysis.
Sweden	SP – Large heat pumps for multi-family and commercial buildings. KTH – Fault detection and diagnoses in heat pump systems.	Field: SP – Literature review of operation and maintenance for large heat pumps. Interviews with real estate companies owning heat pumps. KTH - Investigations and statistical analysis of 68,000 heat pump failures. Modeling / Lab: Determination of failure modes and analysis of found failures (SP) and failure statistics (KTH).
United Kingdom	DECC – Home heating with ground-to-water, water-to-water, and air- to-water systems.	Field: Monitor 83 domestic geothermal heat pumps and make modifications to improve performance.
United States Operating Agent)	NIST – Air-to-air heat pumps in year-round cooling <u>and</u> heating applications.	Lab: Cooling and heating tests with imposed faults To thereiop correlations for heat pump performance degradations due to faults. Modeling: Seasonal analyses modeling to evaluate the effect of installation faults on heat pump seasonal energy consumption; includes effects of different building types (slab vs. basement foundations) and climates.

Annex 36 Participants

- **ACCA** \rightarrow Air Conditioning Contractors of America
- DECC → Department of Energy and Climate Change (UK)
- EdF → Electricité de France
- **KTH** → Royal Institute of Technology (Sweden)
- NIST → National Institute of Standards & Technology
- ORNL → Oak Ridge National Laboratory (US)
- SP → Technical Research Institute of Sweden
- **SVEP** → Swedish Heat Pump Association

Simulated S	necifica	tions (H	FRS Index	<pre>4 = 100)</pre>
Parameter	Houston, TX (Climate Zone	Las Vegas, NV (Climate Zone	Washington, DC (Climate Zone	Chicago & Minn. (Climate
	2)	3)	4)	Zones 5 & 6)
Wall insulation R-value (nominal)	13	13	13	19
Cavity	13	13	13	19
Sheathing	0	0	0	0
framing factor	0.23	0.23	0.23	0.23
Ceiling insulation R-value	30	30	38	38
Slab insulation R-value (2' down)	0	0	0	0
Basement Walls	na	na	na	na
Window U-value (Btu h ⁻¹ ft ⁻² F ⁻¹)	0.75	0.65	0.40	0.35
Window SHGC	0.40	0.40	0.40	0.40
Building enclosure air leakage (ACH50)	7	7	7	7
Enclosure EL A (in ²)	98.1	98.1	98.1	98.1
Duct air leakage to outside (%)	6% sup, 4% ret	6% sup, 4% ret	6% sup, 4% ret	6% sup, 4% ret
Supply duct area in attic (ft ²)	544	544	544	544
Return duct area in attic (ft ²)	100	100	100	100
Duct R-value	6	6	6	6
SEER, EER	13, 9.6	13, 9.6	13, 9.6	13, 9.6
HSPF, COP	7.7, 2.3	7.7, 2.3	7.7, 2.3	7.7, 2.3
Internal heat gain (lum ped)** (people+lighting+appliances)	72.70 kBtu/day	72.70 kBtu/day	72.70 kBtu/day	72.70 kBtu/day
Internal moisture generation	12 1b/day	12 1b/day	12 1b/day	12 1b/da
HERS	106	108	108	10
Cooling / Heating Set Points (F)	78/72	78/72	76 / 70	76/7
The second street of a second street of the street of	0.05	0.127	0.1.11	0.128 / 0.109

Fig	ure 4.2 -	IECC cli	mate	zone	map
	Marine (C) Dry (B)	6	Moist (A)		
	An Jan		3	Married Line	
Zone	Climate	Location	Slab-on- grade house	House with basement	HP Size
Zone	Climate	Location Houston TX	Slab-on- grade house Yes	House with basement no	HP Size
Zone	Climate Hot and humid Hot and dry	Location Houston, TX Las Vegas NV	Slab-on- grade house Yes Yes	House with basement no Yes	HP Size
Zone	Climate Hot and humid Hot and dry Mixed climate	Location Houston, TX Las Vegas, NV Washington DC	Slab-on- grade house Yes Yes Yes	House with basement no Yes Yes	HP Size
Zone 2 3 4 5	Climate Hot and humid Hot and dry Mixed climate Jeating dowingted	Location Houston, TX Las Vegas, NV Washington, DC Chicaon II	Slab-on- grade house Yes Yes Yes Yes	House with basement no Yes Yes Yes Yes	HP Size 3 ton 3.5 ton 2.5 ton

Studied Faults: Cooling & Heating Mod					
Fault True	Fault Levels (%)				
Fault Type	Cooling mode	Heating mode			
Heat Pump Sizing (SIZ)	-20, 25, 50, 75, 100	-20, 25, 50, 75, 100			
Duct Leakage (DUCT)	0, 10, 20, 30, 40, 50	0, 10, 20, 30, 40, 50			
Indoor Coil Airflow (AF)	-36, -15, 7, 28	-36, -15, 7, 28			
Refrig. Undercharge (UC)	-10, -20, -30	-10, -20, -30			
Refrig. Overcharge (OC)	10, 20, 30	10, 20, 30			
Excessive Refrigerant	100,200				

	Table 5.9 - Example of Single-Fault												
	Cin		atic		0001	uite	(1		∧ĭ E	no	(ALD)		
	Simulation Results (Annual Energy)												
	Duct Leakage: slab-on-grade house												
			Louin	Backup	oiub	on g	laao	nou	00				
	Hours	AC	Htg	Heat	AHU Fan			AC	Htg	A HU Fan	TOTAL		
Houston	A bove	Runtime	Runtime	Runtime	Runtime	AC COP	A C SHR	Energy	Energy	Energy	ENERGY	Total	Relative
	55 % RH	(h)	(h)	(h)	(h)	(-)	(-)	(MJ)	(MJ)	(MJ)	(NJ)	Costs	Energy
0 % & No thermal	1,715	1,555	588	0.3	2,142.9	4.3	0.789	13,007	6,623	4,339	24,700	\$583	79%
0 % Leak	1,537	1,794	685	2.1	2,479.0	4.3	0.812	15,048	7,761	5,020	28,559	\$874	91%
10 % Leak	1,512	1,981	749	5.1	2,730.5	4.3	0.785	16,660	8,537	5,529	31,457	\$743	100%
20 % Leak	1,632	2,160	815	9.4	2,975.1	4.4	0.767	18,179	9,383	6,025	34,317	\$810	109%
30 % Leak	1,922	2,327	883	17.5	3,209.7	4.5	0.753	19,574	10,393	6,500	37,198	\$878	118%
40 % Leak	2,738	2,489	953	35.5	3,441.7	4.5	0.743	20,922	11,773	6,970	40,397	\$954	128%
50 % Leak	3,384	2,649	1,032	61.8	3,681.0	4.6	0.734	22,231	13,578	7,454	43,995	\$1,039	140%
Las Vegas	Hours	AC	Htg	Back op Heat	AHU Fan			AC	Htg	A HU Fan	TOTAL	_	_
	Above	Runtime	Runtime	Runtime	Runtime	AC COP	A C SHRI	Energy	Enerow	Energy	I ENERGYI	Total	Relative
	55 % RH	(h)	(h)	(h)	(h)	(-)	(-)	(MJ)	(MJ)	(MJ)	(MJ)	Costs	Energy
0 % & No thermal	55 % RH	(h) 1,538	(h) 668	(h) 0.3	(h) 2,204.5	(-)	(-)	(MJ) 15,941	(MJ) 8,763	(MJ) 5,207	(MJ) 30,642	Costs \$1,072	Energy 78%
0 % & No thermal 0 % Leak	55 % RH - -	(h) 1.538 1.817	(h) 668 786	(h) 0.3 0.3	(h) 2,204.5 2,802.5	(-) 3.7 3.7	(-) 1.000 1.000	(MJ) 15.941 18.952	(MJ) 8.763 10.273	(MJ) 5,207 6,147	(MJ) 30,642 38,104	Costs \$1.072 \$1.284	Energy 78% 92%
0 % & No thermal 0 % Leak 10 % Leak	55 % RH - -	(h) 1.538 1.817 1.988	(h) 888 788 885	(h) 0.3 0.3	(h) 2,204.5 2,802.5 2,831.1	(·) 3.7 3.7 3.7	(-) 1.000 1.000 0.999	(MJ) 15.941 18.952 20,531	(MJ) 8.783 10.273 11,251	(MJ) 5,207 6,147 6,687	(MJ) 30,642 38,104 39,200	Costs \$1.072 \$1.284 \$1.372	Energy 78% 92% 100%
0 % & No thermal 0 % Leak 10 % Leak 20 % Leak	55 % RH - - -	(h) 1.538 1.817 1.988 2,114	(h) 668 786 865 961	(h) 0.3 0.3 1.2	(h) 2,204.5 2,802.5 2,831.1 3,085.4	(·) 3.7 3.7 3.7 3.8	(-) 1.000 1.000 0.999 0.998	(MJ) 15.941 18.952 20.531 22.081	(MJ) 8,763 10,273 11,251 12,339	(MJ) 5,207 6,147 6,687 7,241	(MJ) 30,642 38,104 39,200 42,393	Costs \$1.072 \$1.284 \$1.372 \$1.484	Energy 78% 92% 100% 108%
0 % & No thermal 0 % Leak 10 % Leak 20 % Leak 30 % Leak	55 % RH - - - -	(h) 1.538 1.817 1.988 2,114 2,281	(h) 068 788 885 951 1,054	(h) 0.3 0.3 1.2 3.7	(h) 2,204.5 2,802.5 2,831.1 3,065.4 3,315.3	(+) 3.7 3.7 3.7 3.8 3.8 3.8	(-) 1.000 1.000 0.999 0.998 0.998	(MJ) 15.941 18.952 20.531 22.081 23.580	(MJ) 8.763 10.273 11,251 12,339 13,718	(MJ) 5,207 6,147 6,687 7,241 7,831	(MJ) 30,842 38,104 39,200 42,393 45,881	Costs \$1.072 \$1.284 \$1.372 \$1.484 \$1.605	Energy 78% 92% 100% 108% 117%
0 % & No thermal 0 % Leak 10 % Leak 20 % Leak 30 % Leak 40 % Leak	55 % RH - - - - -	(h) 1.538 1.817 1.988 2.114 2.281 2.405	(h) 668 786 885 951 1.054 1.170	(h) 0.3 0.3 1.2 3.7 8.6	(h) 2,204.5 2,802.5 2,831.1 3,085.4 3,315.3 3,575.4	(+) 3.7 3.7 3.7 3.8 3.8 3.8 3.9	(-) 1.000 1.000 0.999 0.998 0.998 0.998	(MJ) 15.941 18.952 20.531 22.081 23.580 25.028	(MJ) 8.763 10.273 11.251 12.339 13.718 15.353	(MJ) 5,207 6,147 6,887 7,241 7,831 8,445	(MJ) 30,842 38,104 39,200 42,393 45,881 49,558	Costs \$1,072 \$1,284 \$1,372 \$1,484 \$1,805 \$1,735	Energy 78% 92% 100% 108% 117% 128%
0 % & No thermal 0 % Leak 20 % Leak 30 % Leak 40 % Leak 50 % Leak	55 % RH	(h) 1.538 1.817 1.968 2.114 2.281 2.405 2.549	(h) 688 788 885 951 1.054 1.170 1.290	(h) 0.3 0.3 1.2 3.7 8.6 22.7	(h) 2,204.5 2,802.5 2,831.1 3,085.4 3,315.3 3,575.4 3,838.7	(·) 3.7 3.7 3.8 3.8 3.8 3.9 3.9 3.9	(-) 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996	(MJ) 15.941 18.952 20.531 22.081 23.580 25.028 26.444	(MJ) 8.763 10.273 11.251 12.339 13.718 15.353 17.362	(MJ) 5,207 6,147 6,687 7,241 7,831 8,445 9,067	(MJ) 30,642 36,104 39,200 42,393 45,801 49,558 53,605	Costs \$1,072 \$1,284 \$1,372 \$1,484 \$1,805 \$1,735 \$1,876	Energy 78% 92% 100% 108% 108% 117% 128% 137%
0 % & No thermal 0 % Leak 10 % Leak 20 % Leak 30 % Leak 40 % Leak 50 % Leak	55 % RH	(h) 1.538 1.817 1.988 2.114 2.281 2.405 2.549	(h) 688 788 885 961 1,054 1,170 1,290	(h) 0.3 0.3 1.2 3.7 8.6 22.7 Back up	(h) 2,204.5 2,802.5 2,831.1 3,085.4 3,315.3 3,575.4 3,838.7	(+) 3.7 3.7 3.8 3.8 3.8 3.9 3.9 3.9	(-) 1.000 0.999 0.998 0.998 0.998 0.997 0.996	(MJ) 15.941 18.952 20.531 22.081 23.580 25.028 26.444	(MJ) 8.763 10.273 11.251 12.339 13.718 15.353 17.362	(MJ) 5,207 6,147 6,687 7,241 7,831 8,445 9,067	(MJ) 30,842 38,104 39,200 42,393 45,881 49,558 53,605	Costs \$1,072 \$1,284 \$1,372 \$1,484 \$1,805 \$1,735 \$1,876	Energy 78% 92% 100% 108% 117% 128% 137%
0 % & No thermal 0 % Leak 10 % Leak 20 % Leak 30 % Leak 40 % Leak 50 % Leak	55 % RH - - - - - - - - -	(h) 1.538 1.817 1.988 2.114 2.281 2.405 2.549 AC	(h) 068 788 885 961 1.054 1.170 1.290 Htg	(h) 0.3 0.3 0.3 1.2 3.7 8.6 22.7 Back up Heat	(h) 2.204.5 2.802.5 2.831.1 3.085.4 3.315.3 3.575.4 3.838.7 AHU Fan	(+) 3.7 3.7 3.8 3.8 3.8 3.9 3.9 3.9	(-) 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996	(MJ) 15.941 18.952 20.531 22.081 23.580 25.028 28.444 AC	(MJ) 8.763 10.273 11.251 12.339 13.718 15.353 17.362 Htg	(MJ) 5,207 6,147 6,687 7,241 7,831 8,445 9,087 A HU Fan	(MJ) 30,842 38,104 39,200 42,393 45,881 49,588 53,805 TOTAL	Costs \$1,072 \$1,284 \$1,372 \$1,484 \$1,805 \$1,735 \$1,878	Energy 78% 92% 100% 108% 117% 128% 137%
0 % & No thermal 0 % Leak 10 % Leak 20 % Leak 40 % Leak 50 % Leak Washington, DC	55 % RH - - - - - Hours A bove	(h) 1,538 1,817 1,988 2,114 2,281 2,405 2,549 AC Runtime	(h) 088 788 885 961 1.054 1.170 1.290 Htg Runtime	(h) 0.3 0.3 0.3 1.2 3.7 8.6 22.7 Back up Heat Runtime	(h) 2.204.5 2.802.5 2.831.1 3.085.4 3.315.3 3.575.4 3.838.7 AHU Fan Runtime	(+) 3.7 3.7 3.8 3.8 3.9 3.9 3.9 3.9	(-) 1.000 1.000 0.999 0.998 0.998 0.997 0.996 A C SHR	(MJ) 15.941 18.952 20.531 23.580 25.028 28.444 AC Energy	(MJ) 8.763 10.273 11.251 12.339 13.718 15.353 17.362 Htg Energy	(MJ) 5,207 6,147 6,687 7,241 7,831 8,445 9,087 A HU Fan Energy	(MJ) 30,842 38,104 39,200 42,393 45,881 49,558 53,805 TOTAL ENERGY	Costs \$1.072 \$1.284 \$1.372 \$1.484 \$1.805 \$1.735 \$1.876 Total	Energy 78% 92% 100% 108% 117% 128% 137% Relative
0 % & No thermal 0 % Leak 10 % Leak 20 % Leak 30 % Leak 50 % Leak 50 % Leak	55 % RH - - - - - - - - - - - - - - - - - - -	(h) 1,538 1,817 1,988 2,114 2,281 2,405 2,549 AC Runtime (h)	(h) 663 788 865 961 1.054 1.170 1.290 Htg Runtime (h)	(h) 0.3 0.3 1.2 3.7 8.6 22.7 Backup Heat Runtime (h)	(h) 2.204.5 2.802.5 2.831.1 3.085.4 3.315.3 3.575.4 3.838.7 AHU Fan Runtime (h)	(+) 3.7 3.7 3.8 3.8 3.9 3.9 3.9 (-) (-)	(-) 1.000 1.000 0.999 0.998 0.998 0.997 0.997 0.996 AC SHR (-)	(MJ) 15.941 18.952 20.531 22.081 23.500 25.028 28.444 AC Energy (MJ)	(MJ) 8.763 10.273 11.251 12.339 13.718 15.353 17.362 Htg Energy (MJ)	(MJ) 5,207 6,147 6,887 7,241 7,831 8,445 9,007 A HU Fan Energy (MJ)	(MJ) 30,842 38,104 39,200 42,393 45,801 49,558 53,605 TOTAL ENERGY (MJ)	Costs \$1,072 \$1,284 \$1,372 \$1,484 \$1,005 \$1,735 \$1,876 Total Costs	Energy 78% 92% 100% 108% 117% 128% 137% Relative Energy
0 % & No thermal 0 % Leak 10 % Leak 20 % Leak 30 % Leak 50 % Leak Washington, DC 0 % & No thermal	55 % RH - - - - - - - - - - - - - - - - - - -	(h) 1.538 1.817 1.988 2.114 2.281 2.405 2.549 AC Runtime (h) 944	(h) 663 788 865 961 1.054 1.170 1.290 Htg Runtime (h) 1.532	(h) 0.3 0.3 1.2 3.7 8.6 22.7 Back up Heat Runtime (h) 12.9	(h) 2.204.5 2.802.5 2.831.1 3.085.4 3.315.3 3.575.4 3.838.7 AHU Fan Runtime (h) 2.476.3	(+) 3.7 3.7 3.8 3.8 3.9 3.9 3.9 4.0 (-) 4.4	(-) 1.000 1.000 0.999 0.998 0.998 0.997 0.997 0.996 AC SHR (-) 0.801	(MJ) 15.941 18.952 20.531 22.081 23.500 25.028 28.444 AC Energy (MJ) 8.301	(MJ) 8.763 10.273 11.251 12.339 13.718 15.353 17.362 Htg Energy (MJ) 15.111	(MJ) 5,207 6,147 6,887 7,241 7,831 8,445 9,067 A HU Fan Energy (MJ) 4,179	(MJ) 30,842 38,104 39,200 42,393 45,801 49,558 53,605 TOTAL ENERGY (MJ) 26,322	Costs \$1,072 \$1,284 \$1,372 \$1,484 \$1,805 \$1,735 \$1,878 Total Costs \$1,031	Energy 78% 92% 100% 108% 108% 128% 137% Relative Energy 73%
0 % & No thermal 0 % Leak 10 % Leak 20 % Leak 40 % Leak 40 % Leak Washington, DC 0 % & No thermal 0 % Leak	55 % RH - - - - - - - - - - - - - - - - - - -	(h) 1,538 1,817 1,988 2,114 2,281 2,405 2,549 AC Runtime (h) 944 1,100	(h) 668 786 865 961 1.054 1.1054 1.290 Htg Rurtime (h) 1.532 1.803	(h) 0.3 0.3 1.2 3.7 8.0 22.7 Backup Heat Runtime (h) 12.9 54.5	(h) 2.204.5 2.802.5 2.831.1 3.065.4 3.315.3 3.575.4 3.838.7 AHU Fan Runtime (h) 2.476.3 2.902.7	(-) <u>3.7</u> <u>3.7</u> <u>3.8</u> <u>3.8</u> <u>3.9</u> <u>3.9</u> <u>3.9</u> <u>4.4</u> <u>4.4</u> <u>4.4</u>	(-) 1.000 0.999 0.998 0.998 0.997 0.996 AC SHR (-) 0.823	(MJ) 15,941 18,952 20,531 22,081 23,580 25,028 26,444 AC Energy (MJ) 0,301 7,381	(MJ) 8.763 10.273 11.251 12.339 13.718 15.353 17.362 Htg Ene rgy (MJ) 15.111 19.093	(MJ) 5.207 6.147 6.687 7.241 7.831 8.445 9.087 A HU Fan Energy (MJ) 4.179 4.838	(MJ) 30,842 38,104 39,200 42,393 45,801 49,558 53,805 TOTAL ENERGY (MJ) 28,322 32,084	Costs \$1,072 \$1,284 \$1,372 \$1,484 \$1,805 \$1,735 \$1,876 Total Costs \$1,031 \$1,257	Energy 78% 92% 100% 108% 117% 126% 137% Relative Energy 73% 89%
0 % & No thermal 0 % Leak 10 % Leak 20 % Leak 30 % Leak 40 % Leak 50 % Leak Washington, DC 0 % & No thermal 0 % Leak 10 % Leak	55 % RH - - - - - - - - - - - - - - - - - - -	(h) 1.538 1.817 1.988 2.114 2.281 2.405 2.549 AC Runtime (h) 944 1.100 1.207	(h) 668 788 951 1.054 1.170 1.290 Htg Runtime (h) 1.532 1.971	(h) 0.3 0.3 0.3 1.2 3.7 8.6 22.7 Back up Heat Runtime (h) 12.9 54.5 89.0	(h) 2.204.5 2.802.5 2.831.1 3.305.4 3.575.4 3.838.7 AHU Fan Runtime (h) 2.476.3 2.902.7 3.178.0	(+) 3.7 3.7 3.7 3.8 3.8 3.9 3.9 3.9 3.9 (-) 4.4 4.4 4.5	(-) 1.000 1.000 0.999 0.998 0.998 0.997 0.996 A C SHR (-) 0.801 0.803	(MJ) 15,941 18,952 20,531 23,580 25,028 25,028 26,444 AC Energy (MJ) 0,301 7,381 8,088	(MJ) 8.763 10.273 11.251 12.339 13.718 15.353 17.362 Htg Energy (MJ) 15.111 19.093 21.759	(MJ) 5.207 6.147 7.241 7.831 8.445 9.087 A HU Fan Energy (MJ) 4.179 4.898 5.383	(MJ) 30,842 38,104 39,200 42,393 45,881 49,588 53,805 TOTAL ENERGY (MJ) 28,322 32,084 35,952	Costs \$1,072 \$1,284 \$1,372 \$1,484 \$1,005 \$1,735 \$1,876 Total Costs \$1,031 \$1,257 \$1,408	Energy 78% 92% 100% 100% 117% 117% 117% 137% Relative Energy 73% 89% 100%
0 % & No thermal 0 % Leak 10 % Leak 20 % Leak 20 % Leak 40 % Leak 50 % Leak Washington, DC 0 % & No thermal 0 % Leak 10 % Leak	55 % RH - - - - - - - - - - - - - - - - - - -	(h) 1.538 1.817 1.988 2.114 2.281 2.405 2.549 AC Runtime (h) 944 1.100 1.207 1.314	(h) 068 788 951 1.054 1.170 1.290 Htg Runtime (h) 1.532 1.971 2.133	(h) 0.3 0.3 1.2 2.7 Back up Heat Runtime (h) 12.9 54.5 89.0 134.8	(h) 2.204.5 2.802.5 2.831.1 3.085.4 3.315.3 3.575.4 3.838.7 AHU Fan Runtime (h) 2.478.3 2.902.7 3.178.0 3.448.8	(+) 3.7 3.7 3.8 3.8 3.9 3.9 3.9 AC COP (-) 4.4 4.5 4.5	(-) 1.000 1.000 0.998 0.998 0.997 0.996 A C SHR (-) 0.801 0.801 0.803 0.809 0.799	(MJ) 15,941 18,952 20,531 22,081 23,580 25,028 25,028 26,444 AC Energy (MJ) 0,301 7,381 8,088 8,825	(MJ) 8,763 10,273 11,251 12,339 13,718 15,363 17,362 Htg Energy (MJ) 15,111 19,093 21,759 24,760	(MJ) 5.207 6.147 0.887 7.241 7.831 8.445 9.067 A HU Fan Energy (MJ) 4.179 4.886 5.303 5.817	(MJ) 30,842 38,104 42,393 442,393 45,881 49,558 53,805 TOTAL ENERGY (MJ) 20,322 32,084 35,952 40,133	Costs \$1,072 \$1,284 \$1,372 \$1,484 \$1,005 \$1,735 \$1,876 Total Costs \$1,031 \$1,257 \$1,408 \$1,572	Energy 78% 92% 100% 108% 117% 128% 137% Relative Energy 73% 89% 100% 112%
0 % & No thermal 0 % Leak 10 % Leak 20 % Leak 20 % Leak 40 % Leak 50 % Leak Washington, DC 0 % & No thermal 0 % Leak 20 % Leak 20 % Leak	55 % RH - - - - - - - - - - - - - - - - - - -	(h) 1,538 1,817 1,986 2,114 2,281 2,405 2,549 AC Runtime (h) 944 1,100 1,207 1,314 1,419	(h) 068 786 985 951 1.054 1.290 Htg Rurtime (h) 1.532 1.903 1.971 2.133 2.294	(h) 0.3 0.3 0.3 0.3 1.2 3.7 8.6 22.7 Back up Heat Runtime (h) 12.9 54.5 89.0 134.8 192.5	(h) 2.204.5 2.802.5 2.831.1 3.085.4 3.315.3 3.575.4 3.838.7 AHU Fan Runtime (h) 2.478.3 2.902.7 3.178.0 3.448.8 3.448.8	(+) 3.7 3.7 3.8 3.8 3.9 3.9 3.9 4.4 4.4 4.4 4.5 4.5 4.6	(-) 1.000 1.000 0.998 0.998 0.998 0.998 A C SHR (-) 0.801 0.823 0.809 0.799 0.791	(MJ) 15.941 18.962 20.531 22.081 23.580 25.028 26.444 AC Energy (MJ) 0.301 7.381 8.085 8.825 9.528	(MJ) 8.763 10.273 11,251 12.339 13.718 15.353 17.362 Htg Energy (MJ) 15.111 19.093 21.759 24.780 28.180	(MJ) 5.207 8.147 0.887 7.241 7.831 8.445 9.067 A HU Fan Energy 4.898 5.383 5.817 6.285	(MJ) 30,842 38,104 39,200 42,383 45,801 49,568 53,005 53,005 53,005 TOTAL ENERGY (MJ) 20,322 32,084 45,933 44,704	Costs \$1,072 \$1,284 \$1,372 \$1,484 \$1,372 \$1,876 \$1,735 \$1,876 \$1,735 \$1,876 \$1,735 \$1,876 \$1,257 \$1,257 \$1,572 \$1,751	Energy 78% 92% 108% 117% 128% 137% 88% Energy 73% 89% 102% 112%
0 % & No thermal 0 % Leak 10 % Leak 20 % Leak 20 % Leak 40 % Leak 50 % Leak Washington, DC 0 % & No thermal 0 % Leak 10 % Leak 20 % Leak	55 % RH - - - - - - - - - - - - - - - - - - -	(h) 1.530 1.817 1.980 2.114 2.281 2.405 2.549 AC Runtime (h) 944 1.100 1.207 1.314 1.419 1.523	(h) 068 085 951 1.054 1.170 1.290 Htg Runtime (h) 1.532 1.803 1.971 2.133 2.294 2.457	(h) 0.3 0.3 0.3 1.2 3.7 8.6 22.7 Backup Heat Runtime (h) 12.9 54.5 89.0 134.8 192.8 270.0	(h) 2.204.5 2.802.5 2.831.1 3.085.4 3.315.3 3.575.4 3.838.7 AHU Fan Runtime (h) 2.470.3 2.902.7 3.178.0 3.448.8 3.712.5 3.979.2	(+) 3.7 3.7 3.7 3.8 3.8 3.9 3.9 3.9 (-) (-) 4.4 4.5 4.5 4.6 4.6	(-) 1.000 1.000 0.998 0.998 0.998 0.998 0.997 0.396 A C SHR (-) 0.801 0.823 0.809 0.799 0.799 0.796	(MJ) 15.941 18.952 20.531 22.081 23.580 25.028 26.444 AC Energy (MJ) 0.301 8.088 8.825 9.528	(MJ) 8.763 10.273 11.251 12.339 13.718 15.353 17.362 Htg Energy (MJ) 15.111 19.093 21.759 24.760 28.180 32.335	(MJ) 5,207 6,147 6,687 7,241 7,831 8,445 9,067 A HU Fan Energy (MJ) 4,179 4,896 5,383 5,817 6,265 6,715	(MJ) 30,842 38,104 39,200 42,393 45,881 49,588 53,805 TOTAL ENERGY (MJ) 28,322 32,084 35,952 40,133 44,704 49,997	Costs \$1,072 \$1,284 \$1,372 \$1,484 \$1,372 \$1,484 \$1,375 \$1,876 \$1,735 \$1,876 Total Costs \$1,031 \$1,257 \$1,408 \$1,572 \$1,408 \$1,572 \$1,256 \$1,772 \$1,264 \$1,257 \$1,284 \$1,272 \$1,284 \$1,272 \$1,284 \$1,372 \$1,284 \$1,372 \$1,284 \$1,372 \$1,284 \$1,804 \$1,372 \$1,284 \$1,804 \$1,272 \$1,284 \$1,804 \$1,272 \$1,284 \$1,804 \$1,272 \$1,284 \$1,804 \$1,272 \$1,284 \$1,272 \$1,284 \$1,272 \$1,284 \$1,272 \$1,284 \$1,272 \$1,285 \$1,285 \$1,275 \$1,275 \$1,275 \$1,275 \$1,275 \$1,275 \$1,275 \$1,275 \$1,275 \$1,275 \$1,275 \$1,275 \$1,275 \$1,275 \$1,275 \$1,275 \$1,275 \$1,275 \$1,277 \$1,275 \$	Energy 78% 92% 100% 108% 117% 128% 137% Relative Energy 73% 89% 100% 112% 129% 129%

ACCA 2015 Annual Conference 18 Mar 2015

[Obviously, all these faults have a substantial impact on 1st cost, equipment durability, degraded moisture control capability, and comfo

Multi-fault Set: 10		- 15% Airflow	- 36% Airflow
(Houston)		104%	112%
15% Undercharge	105%	107%	111%
30% Undercharge	121%	123%	127%
		Impact	s < Additive

7 - 13% energy penalty for each 25% oversized

Double Faults Example (3)					
Multi-fault Set: 3		20% Duct Leakage	40% Duct Leakage		
(Houston)		109%	128%		
15% Undercharge	105%	115%	136%		
30% Undercharge	121%	132%	156%		
		Effects	Amplified		

Multi-fault Set: 3		20% Duct Leakage	40% Duct Leakage
(Washington, DC)	ľ	112%	139%
15% Undercharge	105%	117%	146%
30% Undercharge	123%	137%	172%
		Effects	Amplified
Multi-fault Set: 3		20% Duct Leakage	40% Duct Leakage
(Minneapolis)	Г	113%	140%
15% Undercharge	103%	116%	144%
30% Undercharge	117%	132%	162%
		Effects	Amplified

Triple Faults

Triple faults not studied ... resource constraints, insufficient data for modeling.

"It is reasonable to assume that the effect of a triple fault will be at least as high as that of any of the possible three fault pairs considered individually; however, **the effort of the third fault can increase the effect of the other two faults in an additive manner**."

Field Problems Can Be Much Worse Than Anyone Ever Thought ...

Additionally, the study **does not address** the effects that installation faults have on **equipment reliability / robustness** (number of starts/stops, etc.), **maintainability** (e.g., access issues), **or costs** of initial installation and ongoing maintenance."

Glenn C. Hourahan, P.E. ACCA

Obviously, without an emphasis on ensuring quality installations (QI) ...

HVAC Systems do not properly perform and ...

Customers Don't Get What they Paid For !!

ACCA 2015 Annual Conference 18 Mar 2015

Why is ACCA Promoting? (aka: the "value proposition")

- Differentiate quality-focused contractors
- · Levels the playing field for professional contractors
- Raises the contractor performance bar
 Industry guides the offert
- Industry guides the effort ... (beats even more regulations from the government)
- Helps stakeholder groups meet efficiency goals

 Oh ... and it helps to ensure that the <u>customer</u> <u>receives</u> what s/he thought s/he was getting all along.

Discussion

